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Soils are complex ecosystems
® Most insights come from isolates & metagenomics
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Soils are complex ecosystems
® Most insights come from isolates & metagenomics
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Soils are complex ecosystems
® Most insights come from isolates & metagenomics
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Soils are complex ecosystems
® Most insights come from isolates & metagenomics
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Limited Knowledge of Soil Viruses

#® 107-10° viruses/g soil = ~1-1,000 viruses: microbe
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Limited Knowledge of Soil Viruses

#® 107-10° viruses/g soil = ~1-1,000 viruses: microbe
#® Morphologically diverse
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Limited Knowledge of Soil Viruses

#® 107-10° viruses/g soil = ~1-1,000 viruses: microbe
#® Morphologically diverse
#® Recent metagenomics and viromics have revealed:
© Recovery of thousands of viral populations (VOTUSs; >10kb) (emerson et al. 2018; Trubl et al. 2018; Trubi et al. 2019)

2 Direct impacts on microbial biogeochemistry via lysis of dominant microbial
lineages or expression of auxiliary metabolic genes (emerson et al. 2018; Trubl et al. 2018)
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Limited Knowledge of Soil Viruses

#® 107-10° viruses/g soil = ~1-1,000 viruses: microbe
#® Morphologically diverse
#® Recent metagenomics and viromics have revealed:
© Recovery of thousands of viral populations (VOTUSs; >10kb) (emerson et al. 2018; Trubl et al. 2018; Trubi et al. 2019)

2 Direct impacts on microbial biogeochemistry via lysis of dominant microbial
lineages or expression of auxiliary metabolic genes (emerson et al. 2018; Trubl et al. 2018)

Recent advancements made
possible by deep sequencing of
metagenomes or laborious viromes

(Figure from Williamson et al. 2017)
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Soils are complex ecosystems
® Most insights come from isolates & metagenomics
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Soils are complex ecosystems
® Most insights come from isolates & metagenomics
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How to track viruses?

Credit: Derek Ramsey

Credit: Animal Humane Society

Credit: Carl Meyer

Viruses are to small...




Stable isotopes

= Atoms that contain the same number of
but differ in the number of

Hydrogen

Proton ~99 90%

Neutron

~0.012%



Stable isotopes

= Atoms that contain the same number of
but differ in the number of

Hydrogen
Proton

Neutron

More mass




Stable isotopes

Can be tracers of biogeochemical processes

®@

H, 160

@ 2 Hydrogens and 1 oxygen (8 protons/8 neutrons)




Characterizing viruses via targeted SIP-metagenomics
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Characterizing viruses via targeted SIP-metagenomics
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Characterizing viruses via targeted SIP-metagenomics
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Characterizing viruses via targeted SIP-metagenomics

Extract DNA

Ultracentrifugation

Dormant
or deceased

/

New growth

Blazewicz et al, 2011, SB&B
Blazewicz et al, 2014, Ecology




Characterizing viruses via targeted SIP-metagenomics

Extract DNA

Ultracentrifugation . ] )
Active microbial

S & viral DNA

Dormant/deceased
microbial & viral
DNA




Characterizing viruses via targeted SIP-metagenomics
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Characterizing viruses via targeted SIP-metagenomics
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Applying SIP to Metagenomics in different biomes

1) Characterize diversity of dsDNA viruses in
soil from different biomes

2) Identify active viruses and their microbial hosts

" Two Long-term ecological research (LTER) sites
= Partially-thaw permafrost bog habitat
= Highly-dynamic tropical rainforest




Bonanza Creek, Alaska
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Bonanza Creek, Alaska

Avg. temperature
-3.1°C

Source: https://www.lter.uaf.edu/




Bonanza Creek, Alaska

Source: https://www.lter.uaf.edu/




Experimental overview
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Bonanza Creek, Alaska

Overview

= 23 metagenomes

30 active metagenome-assembled genomes (MAGs)




Bonanza Creek, Alaska

Overview

= 23 metagenomes

30 active metagenome-assembled genomes (MAGs)
Bacterial hosts spanned 3 phyla:

Proteobacteria

Bacteroidetes

Firmicutes
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Overview

= 23 metagenomes
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Overview

= 23 metagenomes
= ~4,000 viruses detected by VirSorter (categories 1 & 2) &
DeepVirFinder (score > 0.9 and P value < 0.05)
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Overview
= 23 metagenomes

= ~4,000 viruses detected by VirSorter (categories 1 & 2) &
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= 332 vOTUs (>10kb)

Identified viruses were
clustered by 95% nucleotide
identity over 85% of the
shorter contig




Bonanza Creek, Alaska

Overview

= 23 metagenomes

= ~4,000 viruses detected by VirSorter (categories 1 & 2) &
DeepVirFinder (score > 0.9 and P value < 0.05)

= 332 vOTUs (>10kb)

= 9virus-host linkages via nucleotide identity
(threshold 95% ANI & >1500bp)...more to come

Similarity

% L Host ona

Identifiéd virus Virus DNA in identified bacteria




A lot of soil viruses detected!
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H,60_370d
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Increased resolution by removing non-active viruses

s Not active

H,160 184d

H,60_370d

H,180_184d

H,180_370d

Normalized relative abundance
(90% ANI across 75% of contig)

332 vOTUs




Many viruses are active

332 vOTUs

H,160 184d

H,60_370d

H,180_184d

H,180_370d

= 256 vOTUs considered active

- Active

Normalized relative abundance
(90% ANI across 75% of contig)




Viral community is dynamic

Active vOTUs (H,80 samples)

1844 1. Many viruses persist

1

Normalized relative abundance
256 vOTUs (90% ANI across 75% of contig)




What does persistence mean, ecologically?

Active vOTUs (H,80 samples)

1

256 vOTUs

" 68% (173 vOTUs) increased in
184d abundance over time

Normalized relative abundance
(90% ANI across 75% of contig)




What does persistence mean, ecologically?

Active vOTUs (H,80 samples)

1

256 vOTUs

" 68% (173 vOTUs) increased in
abundance over time

1) Temperate viruses propagating in
microbial hosts

2) Virions persist
3) Viral DNA accumulates in
environment as ‘relic DNA’

Normalized relative abundance
(90% ANI across 75% of contig)




Viral community is dynamic

Active vOTUs (H,80 samples)

1. Many viruses persist

184d :
2. Some viruses are gone

1

Normalized relative abundance
256 vOTUs (90% ANI across 75% of contig)




Viral community is dynamic

Active vOTUs (H,80 samples)

1. Many viruses persist
2. Some viruses are gone
3. New viruses become active

184d

1

Normalized relative abundance
256 vOTUs (90% ANI across 75% of contig)




Bonanza Creek, Alaska

Overview
= 23 metagenomes
= ~4,000 viruses detected by VirSorter (categories 1 & 2) &

DeepVirFinder (score > 0.9 and P value < 0.05)
= 332 vOTUs (>10kb)




= Two Long-term ecological research (LTER) sites

= Highly-dynamic tropical rainforest




Luquillo Experimental Forest, Puerto Rico

= Soils naturally oscillate between oxic and anoxic conditions

@ 2008 Copyright FAO and IIASA




Luquillo Experimental Forest, Puerto Rico

= Soils naturally oscillate between oxic and anoxic conditions
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Luquillo Experimental Forest, Puerto Rico

= Soils naturally oscillate between oxic and anoxic conditions
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Luquillo Experimental Forest, Puerto Rico

= Soils naturally oscillate between oxic and anoxic conditions
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Luquillo Experimental Forest, Puerto Rico

13C enriched plant biomass added to 20 g of soil
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Luquillo Experimental Forest, Puerto Rico

13C enriched plant biomass added to 20 g of soil

Treatments:

1. static oxic (Oxic)

2. 4-day-oxic/4-day-anoxic (High frequency)
3. 8-day-oxic/4-day-anoxic (Low frequency)
4. static anoxic (Anoxic)

Oxic/anoxic conditions controlled by headspace
Oxic = air
Anoxic = N,

Figure credit: Alex Paya



Luquillo Experimental Forest, Puerto Rico

13C enriched plant biomass added to 20 g of soil

Treatments:

1. static oxic (Oxic)

2. 4-day-oxic/4-day-anoxic (High frequency)
3. 8-day-oxic/4-day-anoxic (Low frequency)
4. static anoxic (Anoxic)

Incubated for 44 days

85 SIP-fractionated metagenomes

10 bulk soil metagenomes

Figure credit: Alex Paya



Luquillo Experimental Forest, Puerto Rico

Overview
= 95 metagenomes
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Overview
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= 4 phyla of bacterial hosts:

= Acidobacteria

= Actinobacteria
» Bacteroidetes

» Proteobacteria




Luquillo Experimental Forest, Puerto Rico

Overview
= 95 metagenomes
= 214 MAGs
= 4 phyla of bacterial hosts:

= Acidobacteria
= Actinobacteria
= Bacteroidetes
= Proteobacteria

= ~45,000 viruses detected by VirSorter (categories 1 & 2)
& DeepVirFinder (score > 0.9 and P value < 0.05)

Identified viruses were
clustered by 95% nucleotide
identity over 85% of the
shorter contig

= 640 vOTUs (ZlOkb) Identifying viral populations (>10kb)
&p?




Luquillo Experimental Forest, Puerto Rico

Overview
= 95 metagenomes

= 214 MAGs Similarity

= 4 phyla of bacterial hosts: ) ’—¢

= Acidobacteria - ’ L Host ona 2

Identifiéd virus Virus DNA in identified bacteria

= Actinobacteria
» Bacteroidetes

» Proteobacteria

~45,000 viruses detected by VirSorter (categories 1 & 2)

& DeepVirFinder (score > 0.9 and P value < 0.05)
640 vOTUs (>10kb)

11% of viruses are linked to a host via nucleotide identity
(threshold 95% ANI & >1500bp)




Luquillo Experimental Forest, Puerto Rico
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SIP-fractions recovered more vOTUs
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Focus on specific active viruses
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Redox conditions impact viral community

Low Frequency_*3C (12)
More oxygen = more vOTUs?
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Redox conditions impact viral community

Low Frequency_*3C (12)
More oxygen = more vOTUs?

7 viruses active in anoxic conditions

High Frequency *3C (9)
only?

Anoxic_*3C (9)
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Summary

Applied SIP-metagenomics on two dramatically different LTER soils

1. Bonanza Creek, Alaska
= |dentified microbes and viruses active in subzero temperatures
= Temporal succession of vOTUs
= Evidence that viruses may persist in the environment > 1 year
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Summary

Applied SIP-metagenomics on two dramatically different LTER soils

1. Bonanza Creek, Alaska
= |dentified microbes and viruses active in subzero temperatures
= Temporal succession of vOTUs
= Evidence that viruses may persist in the environment > 1 year

2. Luquillo Experimental Forest, Puerto Rico
= Linked viruses to key microbes involved in the degradation and fate of organic carbon
compounds
= Redox strongly influences virus activity
= SIP fractions recovered more vOTUs

Synthesis
= A lot of novel viruses
= Tropical soils had 8x more sequencing, but only ~2x more vOTUs
= Less organisms, reducing metagenome complexity?
» The metabolic repertoire was different between dormant/deceased & active microbes




Acknowledgments

Steve Blazewicz I

Jennifer Pett-Ridge

Ashley Campbell
Jeff Kimbrel

Amrita Bhattacharyya JGI \2
Peter Weber (.\

IOINT GENOME INSTITUTE

Peter Nico
Richard White
VESIGERRES

Funding from:
= |LNL LDRD PLS-18-ERD-041
= US Geological Survey Mendenhall Fellowship

Jack McFarland = DOE OBER Genomic Sciences Early Career Research
Janet Jansson Program award SCW1478

Mark Waldrop
LLNL group




o
>
7

-

q
e
—




Ongoing work

Are viruses important...beyond being cool...for reducing uncertainty?

Using SIP to identify active viral populations
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